
Journal of Applied Mechanics and Technical Physics, Vol. 48, No. 5, pp. 712–722, 2007

DYNAMIC DEFORMATION OF RIGID-PLASTIC

CURVILINEAR PLATES OF VARIABLE THICKNESS

UDC 539.4+539.37Yu. V. Nemirovsky and T. P. Romanova

A general solution is obtained for the problem of dynamic bending of an ideal rigid-plastic plate of
variable thickness with a simply supported or clamped curvilinear contour under the action of a short-
time high-intensity explosive-type load uniformly distributed over the surface. Several mechanisms of
plate deformation are demonstrated to exist. For each mechanism, equations of dynamic deforma-
tion are derived and conditions of mechanism implementation are analyzed. Examples of numerical
solutions are given.

Key words: rigid-plastic plate, curvilinear contour, variable thickness, dynamic load, limit load,
final deflection.

Introduction. Studying the dynamic behavior of structural elements under explosive loading is extremely
important for estimating the degree of structural damage, analyzing the risks, and predicting emergency situations.
The model of an ideal rigid-plastic body is widely used to solve problems of this type [1]. Based on this model, the
dynamic behavior of curvilinear plates of constant thickness under dynamic loading was examined in [2–9].

The most important task in creating shields protecting from explosive loads is the choice of the material
and its distribution in the structure providing the minimum degree of damaging. This problem is directly related
to optimal design, which has been fairly well studied, as applied to static and dynamic harmonic actions on various
structures [10, 11]. The necessity of solving problems of structural optimization under dynamic loading has been
intensely discussed in the literature [12]. Nevertheless, we are unaware of any research in this field, except for beams
[13] and shells of revolution [14]. The present paper continues the research in this field, as applied to flat plates
with a complicated convex support contour.

A method based on the model of an ideal rigid-plastic body is proposed in the paper. This method allows one
to calculate curvilinear plates of variable thickness of a certain type under the action of short-time high-intensity
dynamic loads. The method can be used for various engineering calculations.

1. Let us consider a thin ideal rigid-plastic plate of variable thickness with a curvilinear contour, which is
simply supported or clamped. The plate is subjected to an explosive load uniformly distributed over the surface.
The load has an intensity P (t), which instantaneously reaches the maximum value Pmax = P (0) at the initial
time t = 0 and then rapidly decreases. The plate has an arbitrary piecewise-smooth convex contour l defined in a
parametric form as x = x1(ϕ), y = y1(ϕ), 0 � ϕ � 2π. The radius of curvature of the contour l (except for singular
points) is

R(ϕ) = L3(ϕ)/(x′1y
′′
1 − x′′1y

′
1).

Here L(ϕ) =
√
x′21 (ϕ) + y′21 (ϕ) and ( · )′ = ∂( · )/∂ϕ. For certainty, we consider plates symmetric with respect to

the x axis; the geometric size of the plate in the y direction is not greater than its x size; singular points of the
contour are located on the x axis only (Fig. 1).
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Fig. 1. Scheme No. 1 of deformation of a plate without singular points (a) and with singular
points (b) on the contour.

We introduce a curvilinear orthogonal coordinate system (ν1, ν2) related to the Cartesian coordinate system
(x, y) as

x = x1(ν2) − ν1y
′
1(ν2)/L(ν2), y = y1(ν2) + ν1x

′
1(ν2)/L(ν2).

The curves ν1 = const are located at a distance ν1 from the contour l and have a curvature radius ρ1 = R(ν2)− ν1.
The straight lines ν2 = const are perpendicular to the contour l (the curvature radius is ρ2 = ∞). In this case, the
equation of the plate contour l has the form ν1 = 0, 0 � ν2 � 2π.

We assume that the plate thickness h is a function of the parameter ν1 and changes symmetrically with
respect to the mid-surface of the plate. We consider the scheme of deformation of a curvilinear plate with a certain
function of its thickness h(ν1): h(ν1) = const for ν1 � νc

1 (νc
1 is a certain prescribed value). Other restrictions on

the function h(ν1) and on the value of Pmax are described below.
Depending on the value of Pmax, there are three possible schemes of deformation of the considered plate

made of a rigid-plastic material. Under loads lower than the limit loads (“low” loads), the plate remains at rest.
Under loads slightly higher than the limit loads (“medium” loads), the plate is deformed to a certain ruled surface.
As in the case of a constant-thickness plate [2, 4–8], deformation of a variable-thickness plate is accompanied by
formation of a line plastic hinge l1 in the inner region of the plate. By virtue of plate symmetry, the hinge l1 is
located on the x axis. If there are singular points on the contour l, the hinge l1 passes through these points.

Let Dl(ν2) be the distance between the contour l and the line l1 along the normal to l (see Fig. 1) [2]:

Dl(ν2) = |y1(ν2)/x′1(ν2)|L(ν2).

Then, the hinge l1 is located in the interval x1(π) −Dl(π) � x � x1(0) −Dl(0) and is defined by the equation

ν1 = Dl(ν2), 0 � ν2 � π. (1)

The normal bending moment on the line l1 is σ0h
2(Dl)/4 (σ0 is the yield point of the plate material). Such a

scheme of motion is called scheme No. 1.
As in the case of bending of beams [1], circular and annular plates, rectangular and polygonal plates [1],

plates with a complex-shaped contour [2–9], dynamic deformation of a variable-thickness plate at rather high values
of Pmax may be accompanied by the emergence of a region of intense plastic deformation Zp moving translationally.
In this case, situations are possible with part of the hinge l1 retained (scheme No. 2) or with the hinge l1 absent
(scheme No. 3). Scheme No. 2 shown in Fig. 2a corresponds to “high” loads, while scheme No. 3 in Fig. 2b refers
to “superhigh” loads. In all deformation schemes, the normal to the curve l directed inward the area occupied by
the plate falls either onto the hinge l1 or onto the contour l2, which is the contour of the region Zp. We use Zi to
denote the region of the plate (not including the region Zp) with the normals to the contour l from all points of
this region falling onto the curve li (i = 1, 2). We can demonstrate that the normal to the line l2 is also the normal
to the contour l, and the distance D between l and l2 is independent of the parameter ν2 [2, 4]. The equation for
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Fig. 2. Deformation scheme Nos. 2 (a) and 3 (b).

the contour l2 of the region Zp has the form ν1 = D (ξ1 � ν2 � ξ2 and 2π − ξ2 � ν2 � 2π − ξ1) [2, 4]. The region
of constant thickness of the plate (ν1 � νc

1) should include the region Zp. The plate thickness in the region Zp is
denoted by h(ν1) = hc. The line l2 is a plastic hinge with a normal bending moment σ0h

2
c/4.

Scheme No. 2 refers to the general case of plate deformation. If there are no regions Zp and Z2, this scheme
coincides with scheme No. 1. If there is no region Z1, scheme No. 2 transforms to scheme No. 3. Let us consider
scheme No. 2.

The equation of motion of the plate is derived from the principle of virtual power with the use of the
d’Alembert principle [15]:

K = A−N. (2)

Here K and A are the powers of inertial and external forces, respectively,

K =
∫ ∫ ∫

V

ρV üu̇
∗ dV, A =

∫ ∫

S

P (t)u̇∗ dS,

N is the power of internal forces, V and S are the volume and area of the plate, ρV is the density of the plate
material, u is the deflection, and dV and dS are the volume and area elements; the dots over the symbols denote
the derivatives with respect to time; the quantities marked by the asterisk are admissible velocities. The expression
for N is written below.

We use ẇc(t) to denote the velocity of translational motion of the region Zp and α̇ to denote the velocity
of the angle of turning of the region Z2 on the support contour. The condition of continuity of velocities on the
boundary between the regions Z2 and Zp implies that α̇ is independent of the parameter ν2. Because of continuity
of velocities on the boundaries between the regions Z1 and Z2, like in [8], the velocity of the angle of turning of the
region Z1 on the support contour is also α̇. Then, the deflection rates of the plate are

(ν1, ν2) ∈ Zp: u̇(ν1, ν2, t) = ẇc(t), (ν1, ν2) ∈ Zi: u̇(ν1, ν2, t) = α̇(t)ν1 (i = 1, 2). (3)

The main curvatures of the surface of deflection rates of the plate in the regions Z1 and Z2 are

κ1 =
∂2u̇

∂ν2
1

= 0, κ2 =
1
ρ1

∂u̇

∂ν1
=

α̇(t)
R(ν2) − ν1

.

In the regions Z1 and Z2, the bending moment is M22 = σ0h
2(ν1)/4. On the contour l of the plate, we have

u(0, ν2, t) = u̇(0, ν2, t) = 0 and M11 = −σ0h
2(0)(1 − η)/4, where η = 0 if the contour l is clamped and η = 1 if it is

simply supported.
Taking into account the distribution of deflection rates (3) and the fact that the condition h(ν1) = hc is

satisfied in the region Zp, with dV = h(ν1) ds and ds = L(1 − ν1/R) dν1 dν2, we obtain

K = ρV

(
α̈α̇∗

∫ ∫

Z1∪Z2

h(ν1)ν2
1 ds+ ẅcẇ

∗
c

∫ ∫

Zp

h ds
)

= ρV

(
α̈α̇∗Σ1 + ẅcẇ

∗
chc

∫ ∫

Zp

ds
)
,

A = P (t)
(
α̇∗

∫ ∫

Z1∪Z2

ν1 ds+ ẇ∗
c

∫ ∫

Zp

ds
)

= P (t)
(
α̇∗Σ2 + ẇ∗

c

∫ ∫

Zp

ds
)
,
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Σ1(ξ1, ξ2, D) = 2
{ ξ1∫

0

L
[ Dl(ν2)∫

0

hν2
1

(
1 − ν1

R

)
dν1

]
dν2

+

ξ2∫

ξ1

L
[ D(t)∫

0

hν2
1

(
1 − ν1

R

)
dν1

]
dν2 +

π∫

ξ2

L
[ Dl(ν2)∫

0

hν2
1

(
1 − ν1

R

)
dν1

]
dν2

}
,

Σ2(ξ1, ξ2, D) = 2
{ ξ1∫

0

L
[ Dl(ν2)∫

0

ν1

(
1 − ν1

R

)
dν1

]
dν2

+

ξ2∫

ξ1

L
[ D(t)∫

0

ν1

(
1 − ν1

R

)
dν1

]
dν2 +

π∫

ξ2

L
[ Dl(ν2)∫

0

ν1

(
1 − ν1

R

)
dν1

]
dν2

}
.

The expression for the power of internal forces N in Eq. (2) is presented as

N =
4∑

i=1

Ni,

where N1, N2, N3, and N4 are the powers of internal forces on the contour l, inside the regions Z1 and Z2, on the
line l2, and on the line l1, respectively,

N1 = (1 − η)σ0
h2(0)

4

∮

l

[θ̇∗]l dl (dl = Ldν2), N2 =
σ0

4

∫ ∫

Z1∪Z2

h2(ν1)κ∗2 ds,

N3 = σ0
h2(D)

4

∮

l2

[θ̇∗]l2 dl2, N4 =
σ0

4

∫

l1

h2(Dl(ν2))[θ̇∗]l1 dl1,

[θ̇]m is the discontinuity of the angular velocity on the line m, and dl, dl1, and dl2 are the length elements of the
lines l, l1, and l2. With allowance for the fact that the normal to the line l2 is also the normal to the contour l,
Eq. (3) implies that [θ̇]l = [θ̇]l2 = α̇. Then, we obtain

N1 = (1 − η)σ0
h2(0)

2
α̇∗

π∫

0

Ldν2,

N2 =
σ0

4
α̇∗

∫ ∫

Z1∪Z2

h2(ν1)
1

R(ν2) − ν1
ds

=
σ0

2
α̇∗

[ ξ1∫

0

L

R

( Dl(ν2)∫

0

h2 dν1

)
dν2 +

( ξ2∫

ξ1

L

R
dν2

) D(t)∫

0

h2 dν1 +

π∫

ξ2

L

R

( Dl(ν2)∫

0

h2 dν1

)
dν2

]
,

N3 = σ0
h2(D)

4
α̇∗

∫

l2

dl2 =
σ0

2
h2(D)α̇∗

ξ2∫

ξ1

L
(
1 − D

R

)
dν2.

To determine N4, we calculate [θ̇]l1 and dl1. From Eq. (1), for the line l1 we obtain dl1 =√
(1 −Dl/R)2L2 + (∂Dl/∂ν2)2 dν2. As (∂Dl/∂ν2)2 = (y′21 L

2/x′21 )(1 −Dl/R)2, then

dl1 =
(1 −Dl/R)L2

|x′1|
dν2.
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Fig. 3. Additional plot for calculating the discontinuity of the angular velocity on the line l1.

The discontinuity of the angular velocity on the line l1 is denoted by [θ̇]l1 = 2β̇. To calculate the angle β, from the
point E(0, ν2) of the contour l, such that ν2 ∈ (0, ξ1) or ν2 ∈ (ξ2, π), on an undeformed plate we plot the normal to
l until its intersection with the line l1 at the point B (Figs. 1 and 3); |BE| = Dl(ν2). The segment BE intersects
the line l1 at an angle ψ (tan ψ = −x′1/y′1). Through the segment BE, we plot the plane BEC perpendicular to
the original surface of the plate (BC⊥BE) (see Fig. 3). We also plot the plane ECD tangential to the deformed
plate surface along the straight line EC. Then, we have ∠BEC = α. Through the point B, we plot the plane BCD
normal to the line l1. We obtain ∠BCD = π/2−β and, hence, ∠BDC = β. As |BC| = |BE|α and |BC| = |BD|β,
we have β = α |BE|/|BD|. Then, we obtain

β̇ = α̇ sinψ = α̇|x′1|/L.
Substituting the calculated values into the expression for N4, we obtain

N4 = α̇∗ σ0

2

[ ξ1∫

0

h2(Dl(ν2))
(
1 − Dl

R

)
Ldν2 +

π∫

ξ2

h2(Dl(ν2))
(
1 − Dl

R

)
Ldν2

]
.

The total power of internal forces of the plate N is described by the expression

N = α̇∗σ0Σ3, Σ3(ξ1, ξ2, D) =
1

α̇∗σ0

4∑

i=1

Ni.

Note, if h(ν1) = const, then

N = (2 − η)α̇∗σ0
h2

4

2π∫

0

Ldν2.

Substituting the expressions for K, A, and N into Eq. (2) and taking into account that α̇∗ and ẇ∗
c are

independent of each other, we obtain the equations of motion in the case of deformation by scheme No. 2:

ρV α̈Σ1 = P (t)Σ2 − σ0Σ3; (4)

ρV hcẅc = P (t). (5)

The condition of continuity of velocities on the boundaries between the regions Z2 and Zp, Z2 and Z1 implies
that

α̇D = ẇc; (6)

D(t) = Dl(ξi(t)) (i = 1, 2). (7)

The initial conditions are

α̇(0) = α(0) = ẇc(0) = wc(0) = 0. (8)

The initial values of D0 = D(0) and ξi0 = ξi(0) for the functions D(t) and ξi(t) (i = 1, 2) are determined, depending
on the value of Pmax (see below).
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System (4)–(7) describes the plate motion in the case of its deformation by scheme No. 2. In the case with
scheme No. 3, the region Z1 is absent, and the motion is described by Eqs. (4)–(6) with Σi (i = 1, . . . , 3) substituted
by Ωi(D) = Σi(0, π,D). In the case with scheme No. 1, the regions Z2 and Zp are absent, and the behavior of the
plate is described by Eq. (4) with Σi (i = 1, . . . , 3) substituted by Ω∗

i = Σi(ξm, ξm, Dmax), where the value of ξm is
such that Dmax = max

ν2
Dl(ν2) = Dl(ξm).

2. Let us analyze plate deformation. If 0 < Pmax � P0 (“low” loads), where P0 is the limit load, the plate
remains at rest. We find the value of P0 from Eq. (4) with Σi substituted by Ω∗

i (i = 1, . . . , 3) at the beginning of
motion t = 0, assuming that α̈(0) = 0. Then, we obtain

P0 = σ0Ω∗
3/Ω

∗
2. (9)

If P0 < Pmax � P1 (“medium” loads), where P1 is the load corresponding to the emergence of the region Zp,
then, the plate motion follows scheme No. 1. The load P1 is determined as follows. Differentiating Eq. (6) with
respect to time and eliminating the quantities α̈ and ẅc with the use of Eqs. (4) and (5), we obtain the relation

−ρV α̇Ḋ

D
Σ1 = P (t)

(
Σ2 − Σ1

Dhc

)
− σ0Σ3. (10)

When the regions Z2 and Zp appear at the time t = 0, the region Z1 occupies the entire plate and ξ1 = ξ2 = ξm
and D = Dmax. Then, Eq. (10) yields

P1 =
σ0Ω∗

3

Ω∗
2 − Ω∗

1/(Dmaxhc)
. (11)

It follows from Eqs. (9) and (11) that P0 < P1 independent of the form of the function h(ν1). In the case with
scheme No. 1, the equation of motion (4) can be written as

α̈(t) = F [P (t) − P0], F = Ω∗
2/(ρV Ω∗

1). (12)

The initial conditions have the form (8). At the time t = T , the load is removed, and the plate moves due to inertia
for a certain time.

At 0 � t � T , integration of the equation of motion (12) yields

α̇(t) = F
( t∫

0

P (τ) dτ − P0t
)
, α(t) = F

( t∫

0

λ∫

0

P (τ) dτ dλ− P0
t2

2

)
.

At T < t � tf , the plate motion is due to inertia until it stops at the time tf ; this motion is described by the
equation

α̈(t) = −FP0

with the initial conditions α̇(T ) and α(T ). The final time tf is found from the condition

α̇(tf ) = 0. (13)

Integrating the equation of motion, we obtain the equalities

α̇(t) = α̇(T ) − FP0(t− T ); (14)

α(t) = α(T ) + α̇(T )(t− T ) − FP0(t− T )2/2.
It follows from Eqs. (13) and (14) that

tf =
1
P0

T∫

0

P (t) dt.

The deflection is calculated by Eqs. (3), and the maximum final deflection is found by the formula

umax = DmaxF
[ 1
2P0

( T∫

0

P (t) dt
)2

−
T∫

0

tP (t) dt
]
. (15)

If P1 < Pmax � P2 (“high” loads), where P2 is the load at which the region Z1 and the hinge l1 disappear, the
motion begins with a developed region Zp at Dmin < D0 < Dmax, where Dmin = min

ν2
Dl(ν2) = min (Dl(0), Dl(π)).
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For plates with a smooth support contour, Dmin = min (R(0), R(π)). The initial values of D0 and ξi0 are determined
by equalities (7) and Eq. (10) with allowance for the condition α̇(0) = 0:

Pmax

(
Σ2(ξ10, ξ20, D0) − Σ1(ξ10, ξ20, D0)

D0hc

)
= σ0Σ3(ξ10, ξ20, D0). (16)

For plates with singular points on the contour, the hinge l1 does not disappear and Dmin = 0; in this case, the
load P2 cannot be determined. For plates with a smooth contour l, the load P2 is determined from Eq. (16) with
D = Dmin, ξ1 = 0, and ξ2 = π:

P2 =
σ0Σ3(0, π,Dmin)

Σ2(0, π,Dmin) − Σ1(0, π,Dmin)/(Dminhc)
.

In the first phase of deformation (0 < t � t1), the plate motion follows scheme No. 2 and is described by
Eqs. (4)–(7) with the initial conditions (8) and (16). In this phase, the size of the region Zp decreases by the law
described by Eq. (10) (Ḋ > 0). The time t1 corresponding to disappearance of the region Zp is determined from
the equality D(t1) = Dmax, with ξ1(t1) = ξ2(t1) = ξm. At this moment, the values of α̇(t1), α(t1), ẇc(t1), and
wc(t1) are determined. In this phase, the motion can cease at D(t1f ) < Dmax at the time t1f determined from the
equation α̇(t1f ) = 0. If t1 < t1f , then the motion continues in the second phase.

The second phase of plate motion (t1 < t � tf ) follows scheme No. 1 until termination at the time tf . Plate
deformation is described by Eq. (12) with the initial conditions determined at the end of the first phase of motion.
The final time is found from condition (13). All deflections of the plate are calculated from Eqs. (3) with allowance
for all phases of motion.

If Pmax > P2 (“superhigh” loads), then the plate motion begins in accordance with scheme No. 3 with a
developed region Zp. The value of D0 is found from Eq. (10) with Σi substituted by Ωi(D0) (i = 1, . . . , 3) with
allowance for the condition α̇(0) = 0:

Pmax(Ω2(D0) − Ω1(D0)/(D0hc)) = σ0Ω3(D0). (17)

In the first phase of deformation (0 < t � t1), the plate motion follows scheme No. 3 and is described by
Eqs. (4)–(6) with Σi substituted by Ωi(D) (i = 1, . . . , 3) with the initial conditions (8) and (17). In this phase, the
size of the region Zp decreases in accordance with the law described by Eq. (10) with Σi substituted by Ωi(D). The
time t1 corresponding to the emergence of the region Z2 is determined from the equality D(t1) = Dmin. At this
moment, the values of α̇(t1), α(t1), ẇc(t1), wc(t1), ξ1(t1) = 0, and ξ2(t1) = π are found. In this phase, the motion
can cease at D(t2f ) < Dmin at the time t2f determined from the equation α̇(t2f ) = 0. If t1 < t1f , the motion
continues in the second phase.

The motion in the second (t1 < t � t2) and third (t2 < t � tf ) phases is similar to the motion in the first
and second phases of deformation in the case of “high” loads with appropriate initial values. All deflections are
calculated by Eqs. (3) with allowance for all phases of motion.

3. Let us consider the restrictions imposed onto the function h(ν1) and on the value of Pmax in the deforma-
tion scheme proposed. These conditions are obtained by comparing the limit load P0 with the limit load in other
possible schemes of motion. If the value of hc is sufficiently large, then the bending moment M22 = σ0h

2
c/4 in a cer-

tain central region Zc (νc
1 � ν1 � Dl(ν2), where 0 � ν2 � 2π (νc

1 � Dmin) or ξc
1 � ν2 � ξc

2 and 2π−ξc
2 � ν2 � 2π−ξc

1

(νc
1 > Dmin)) is substantially greater than that in the remaining part of the plate. Hence, the region Zc is not

deformed, and the plate motion occurs in the presence of the rigid central region Zc moving translationally with a
velocity α̇νc

1 . Let us find the limit load P c
0 for such a deformation scheme. The power of external forces Ac is

Ac = P (t)
( ∫ ∫

Z1∪Z2

α̇∗ν1 ds+
∫ ∫

Zc

α̇∗νc
1 ds

)
= P (t)α̇∗Σc

2,

Σc
2(ξ

c
1, ξ

c
2, ν

c
1) = 2

{ ξc
1∫

0

L
[ Dl(ν2)∫

0

ν1

(
1 − ν1

R

)
dν1

]
dν2 +

ξc
2∫

ξc
1

L
[ νc

1∫

0

ν1

(
1 − ν1

R

)
dν1

]
dν2

+

π∫

ξc
2

L
[ Dl(ν2)∫

0

ν1

(
1 − ν1

R

)
dν1

]
dν2 + νc

1

ξc
2∫

ξc
1

L
[ Dl(ν2)∫

νc
1

(
1 − ν1

R

)
dν1

]
dν2

}
.

Then, we have P c
0 = σ0Σ3(ξc

1, ξ
c
2, ν

c
1)/Σ

c
2(ξ

c
1, ξ

c
2, ν

c
1).
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Fig. 4. Scheme No. 1 of plate deformation in the case where the central part of the plate Z̄c

[νc
1 � ν1 � Dl(ν2)] remains rigid simultaneously with formation of the boundary hinge l̄ (ν1 = νa

1 ).

Plates of variable thickness may deform with formation of boundary plastic hinges l̄ at a certain distance νa
1

from the contour l inside the plate rather than over the perimeter of the support contour; in this case, the region
near the plate contour remains undeformed. The equation of the contour l̄ has the form ν1 = νa

1 (ξa
1 � ν2 � ξa

2 and
2π − ξa

2 � ν2 � 2π − ξa
1 ). On the contour l̄, the bending moment is M11 = −σ0h

2(νa
1 )/4. It follows from Eq. (9)

that the limit load P̄0 for a clamped curvilinear plate with the contour l̄ is

P̄0 = σ0Ω̄3/Ω̄2,

where

Ω̄3(ξa
1 , ξ

a
2 , ν

a
1 ) =

1
2

[
h2(νa

1 )

ξa
2∫

ξa
1

L
(
1 − νa

1

R

)
dν2 +

ξa
2∫

ξa
1

L

R

( Dl(ν2)∫

νa
1

h2 dν1

)
dν2 +

ξa
2∫

ξa
1

h2(Dl(ν2))
(
1 − Dl

R

)
dν2

]
,

Ω̄2(ξa
1 , ξ

a
2 , ν

a
1 ) = 2

ξa
2∫

ξa
1

L
[ Dl(ν2)∫

νa
1

(ν1 − νa
1 )

(
1 − ν1

R

)
dν1

]
dν2.

In this case, a situation is also possible where some central part of the plate Z̄c (νc
1 � ν1 � Dl(ν2)) remains rigid,

in addition to formation of the boundary hinge l̄ (ν1 = νa
1 ) (Fig. 4). Let us determine the limit load P̄ c

0 for such a
deformation scheme. The power of external forces Āc is

Āc = P (t)
( ∫ ∫

Z̄1∪Z̄2

α̇∗ν1 ds+
∫ ∫

Z̄c

α̇∗νc
1 ds

)
= P (t)α̇∗Σ̄c

2,

Σ̄c
2(ξ

c
1, ξ

c
2, ν

c
1) = 2

{ ξc
1∫

ξa
1

L
[ Dl(ν2)∫

νa
1

(ν1 − νa
1 )

(
1 − ν1

R

)
dν1

]
dν2

+

ξc
2∫

ξc
1

L
[ νc

1∫

νa
1

(ν1 − νa
1 )

(
1− ν1

R

)
dν1

]
dν2 +

ξa
2∫

ξc
2

L
[ Dl(ν2)∫

νa
1

(ν1 − νa
1 )

(
1− ν1

R

)
dν1

]
dν2 + νc

1

ξc
2∫

ξc
1

L
[ Dl(ν2)∫

νc
1

(
1− ν1

R

)
dν1

]
dν2

}
.

Then, we have P̄ c
0 = σ0Ω̄3(ξa

1 , ξ
a
2 , ν

a
1 )/Σ̄c

2(ξ
c
1, ξ

c
2, ν

c
1).

If the function h(ν1) has such a form that the inequality P0 < min (P c
0 , P̄0, P̄

c
0 ) is valid, the plate deformation

occurs in accordance with scheme Nos. 1–3 (see Secs. 1 and 2). As the model of motion proposed was derived
under the assumption that h(ν1) = const = hc in the region Zp, it follows from Eqs. (16) and (17) that there are
restrictions on the value of Pmax:

Pmax � σ0Ω3(νc
1)

Ω2(νc
1) − Ω1(νc

1)/(ν
c
1hc)

for plates with a smooth contour l and
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Pmax � σ0Σ3(ξc
1, ξ

c
2, ν

c
1)

Σ2(ξc
1, ξ

c
2, ν

c
1) − Σ1(ξc

1, ξ
c
2, ν

c
1)/(ν

c
1hc)

for contours with singular points. In these expressions, the values of ξc
i (i = 1, 2, ξc

1 � ξc
2) are determined by the

equality νc
1 = Dl(ξc

i ). For constant-thickness plates, the model is applicable for all values of Pmax. For loads with
Pmax � P1, the model is valid for all functions h(ν1), and deformation follows scheme No. 1.

If the function h(ν1) and the constants hc and νc
1 are such that P c

0 < min (P0, P̄0, P̄
c
0 ), we have to consider

the problem of motion of a variable-thickness curvilinear plate with a rigid insert in the central part of the plate.
For h(ν1) = const with 0 � ν1 � νc

1, this problem was considered in detail in [16].
If the condition

P̄0 < min (P0, P
c
0 , P̄

c
0 ) (18)

is satisfied, the plate is deformed only in the central region with the contour l̄ (ν1 = νa
1 ). The value of νa

1 corresponds
to the minimum value of P̄0 for which inequality (18) holds, and the values of ξa

i are determined by the equality
νa
1 = Dl(ξa

i ) (i = 1, 2, ξa
1 � ξa

2 ) if the contour l̄ passes through the line l1 or ξa
1 = 0, ξa

2 = π if the contour l̄ envelops
the line l1 (these cases correspond to Fig. 2 with D = νa

1 and l replaced by l̄). In the case considered, the behavior
of the plate is qualitatively similar to the behavior studied in Sec. 2, with the contour l replaced by the clamped
contour l̄.

4. As an example, let us consider the dynamic behavior of a plate with a contour consisting of two arcs of
a circumference of radius R with a central angle 2γ (see Fig. 1b). For such a plate, in the polar coordinate system
(r = R − ν1, ϕ = ν2), we obtain L = R, Dl(ϕ) = R[1 − cos γ/ cos (γ − ϕ)], and Dmax = Dl(γ) = R(1 − cos γ)
(0 � ϕ � γ and 0 < γ � π/2). Depending on the value of Pmax, two mechanisms of deformation of such a plate are
possible. Under “medium” loads, the plate surface is deformed into a cone-shaped surface (scheme No. 1). Under
“high” loads, a translationally moving region Zp is formed in the central part of the plate. The contour of the region
Zp consists of two arcs of a circumference of radius R−D with a central angle 2(γ − ξD), where 0 < ξD � γ. For
ξD = γ, there are no regions Zp and Z2. We assume that h = h(r). In the case with scheme No. 2, the equations
of motion of such a plate have the form (4)–(7), where

ξ1 = ξD, ξ2 = π − ξD,

Σ1(ξD) = 4
{ ξD∫

0

[ R∫

R cos γ

cos (γ−ϕ)

hr(R − r)2 dr
]
dϕ+ (γ − ξD)

R∫

R cos γ

cos (γ−ξD)

hr(R − r)2 dr
}
,

Σ2(ξD) =
2R3

3

{
ξD − cos2 γ[2 tan γ − 3 tan (γ − ξD)]

+ cos3 γ
(

ln
cos γ[1 − sin (γ − ξD)]
cos (γ − ξD)(1 − sin γ)

− tan (γ − ξD)
cos (γ − ξD)

)

+(γ − ξD)
(
1 − cos γ

cos (γ − ξD)

)2(
1 +

2 cosγ
cos (γ − ξD)

)}
,

Σ3(ξD) = (1 − η)h2(R)γR+

ξD∫

0

( R∫

R cos γ

cos(γ−ϕ)

h2(r) dr
)
dϕ

+ (γ − ξD)
[ R∫

R cos γ

cos(γ−ξD)

h2(r) dr + h2
( R cos γ

cos (γ − ξD)

) R cos γ
cos (γ − ξD)

]

+R cos γ

ξD∫

0

h2
( R cos γ

cos (γ − ϕ)

) dϕ

cos (γ − ϕ)
.
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Fig. 5. Dimensionless limit load p0 (curves 1, 3, and 5) and load p1 (curves 2, 4, and 6) versus the angle γ:
constant-thickness plate h(r) = h(R) (1 and 2), plate thickness varied by law (19) (3 and 4), and plate thickness
varied by law (20) (5 and 6).

Fig. 6. Dimensionless deflections w in the cross section x = 0 of a simply supported plate with a contour consisting
of two arcs of a circumference of radius R with a central angle 2γ (γ = 1.2 and Dmax = 0.638R) under a load in the
form of a rectangular pulse: deflection for plate thickness varied by law (20) for t = T (curve 1), t = t1 = 2.79T
(curve 2), and t = tf = 6.2T (curve 3); curves 4 and 5 refer to the final deflections of a constant-thickness plate
h(r) = h(R) (tf = 3.22T ) and of a plate with thickness varied by law (19) (tf = 1.8T ), respectively.

Figure 5 shows the limit load p0 and the load p1 versus the angle γ [pi = PiR
2/M0, i = 0, 1, and M0 =

σ0h
2(R)/4], which were calculated by Eqs. (9) and (11) for a simply supported plate (η = 1). Curves 1 and 2 refer

to p0 and p1 with h(r) = h(R). Curves 3 (for p0) and 4 (for p1) correspond to the case

h(r) =

{
h(R)[1 + (R− r)/(2Dmax)], R � r � R−Dmax/2,

5h(R)/4, R−Dmax/2 � r � R cos γ,
(19)

and curves 5 (for p0) and 6 (for p1) refer to the case

h(r) =

{
h(R)[1 − (R− r)/(2Dmax)], R � r � R−Dmax/2,

3h(R)/4, R−Dmax/2 � r � R cos γ.
(20)

The deflections w = uR2ρV h(R)/(M0T
2) of the simply supported plate with γ = 1, 2, Dmax = 0.638R in

the cross section x = 0 are plotted in Fig. 6. The plate is subjected to loading in the form of a rectangular pulse:
P (t) = 38.37M0/R

2 at 0 � t � T and P (t) = 0 at t > T . Curves 1–3 show the deflections with plate thickness varied
by law (20) at the times t = T , t = t1 = 2.79T , and t = tf = 6.2T , respectively [ξD(0) = 0.2]. Curve 4 shows the final
deflection of the plate considered in the case h(r) = h(R) (tf = 3.22T ). If plate thickness varies by law (19), plate
deformation follows the scheme for “medium” loads, because P0 = 21.34M0/R

2 and P1 = 50.58M0/R
2 > Pmax. At

tf = 1.8T , the maximum final deflection at the plate center, calculated by Eq. (15), is w = 21.16 (curve 5).
It follows from Figs. 5 and 6 that a change in plate thickness produces a significant effect both on the

magnitude of the limit load and on the final deflections. For loads higher than the limit values, the limit load may
be increased severalfold and the final deflection may be reduced by changing the plate thickness, thus, the quality
of the structure is improved.
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